
For since the fabric of the Universe is most perfect and the works
of a most wise creator, nothing at all takes place in the Universe in
which some rule of maximum or minimum does not appear

- Leonhard Euler

Chapter 3

Normalized Scale-Space Derivatives:
A Statistical Analysis

This chapter presents a statistical analysis of multiscale derivative measurements.  Noisy
images and multiscale derivative measurements made of noisy images are analyzed; the
means and variances of the measured noisy derivatives are calculated in terms of the
parameters of the probability distribution function of the initial noise function and the
scale or sampling aperture.  Normalized and unnormalized forms of differential scale
space are analyzed, and the statistical results are compared.  A discussion of the results
and their ramifications for multiscale analysis is included.

3.1.  Introduction and Background

There has been substantial research in the area of differential invariants of scale space.
Notably, researchers such as Koenderink, ter Haar Romeny, Florack, Lindeberg, Blom,
and Eberly have contributed many papers on scale space and the invariances of scale-
space derivatives [Koenderink 1984, ter Haar Romeny 1991ab, Florack 1993, Lindeberg
1992, Blom 1993, and Eberly 1994].  This sub-field of computer vision has yielded many
significant insights.  This chapter is an exploration of some of the statistical aspects of
scale space when the source images are subject to spatially uncorrelated noise.

This section amplifies scale space and multiscale derivative concepts presented in
Chapter 2.  It also presents a notation for multiscale derivatives borrowed from other
related research.

Given some scale or measurement aperture σ, scale-space derivatives of a digital
image are measured by convolving the image with a derivative-of-Gaussian kernel.
Given a continuous 2D image function I(p) and a Gaussian kernel G(σ, p) where
p = (x, y), multiscale derivatives of arbitrary order are described by the following
equation:

L
xnym = L

I, xnym (p | σ) = ∂
n

∂xn
∂

m

∂ym I(p | σ) = ∂
n

∂xn
∂

m

∂ym G(σ,p) ⊗ I(p) (3-1)

The term shown above is described as the n-th derivative in the x-direction and the m-th
derivative in the y-direction given scale σ.  Ter Haar Romeny et al. have adapted Einstein
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Summation Notation (ESN) to provide a compact description of scale-space derivatives.
In their notation, shown in the leftmost expression in equation (3-1), the image function
I(p), the scale parameter σ, and the location parameter p are often assumed, resulting in
the abbreviated notation L xnym  to represent scale-space differentiation.  I use the

abbreviated notation, L
xnym , as well as the term L

I ,xnym (p | σ) interchangeably in this

chapter.  When it is necessary to specify a particular image function, spatial location, or
scale, I will use the notation L

I ,xnym (p | σ).

The geometry captured in derivative measurements can be used to classify points
within an image.  Derivatives embody properties such as Gaussian or mean intensity
curvature, gradient magnitude (often used as a measure of boundariness), isophote
curvature, and a host of other important features of the image.

Derivatives can be measured not only along the directions of the Cartesian coordinate
directions, but in any arbitrary direction about a point.  The work of ter Haar Romeny and
Florack describes a coordinate frame or gauge at each spatial location based on the
structure of first order derivatives.  When measured in gauge coordinates, higher order
derivatives exhibit invariance with respect to spatial rotation.  Expressing derivatives in
gauge coordinates simplifies the notation and computation of scale-space derivatives
[ter Haar Romeny 1991a].

Tracing image intensities and derivative values through changing scale is also often
useful.  Derivatives with respect to scale are easily computed.  The Gaussian has the
property that the second derivative with respect to spatial coordinates is directly
proportional to the first derivative with respect to scale.  This property simplifies many
scale-space calculations.  Multiscale derivatives of the continuous image function I(p)
given a Gaussian scale operator G(σ, p) taken with respect to scale σ are

L σ k = L I ,σk (p | σ) = ∂
k

∂σk I(p | σ) = ∂
k

∂σ k G(σ, p) ⊗ I(p) (3-2)

3.1.1.  Scale-Space Differential Invariants

As described in Chapter 2, the Gaussian is a natural scale-space aperture function by the a
priori constraints of linearity, shift invariance, and rotation invariance.  Zoom invariance
is achieved by imposing an appropriate metric on scale-space.  Florack and ter Haar
Romeny specified a distance metric that preserves the Euclidean nature of scale space [ter
Haar Romeny 1991ab].  In more recent work, Eberly suggests a dimensionless 1-form to
be used in scale-space measurements, specifying a hyperbolic construction for scale space
[Eberly 1994ab].

∂p
σ

ρ
∂σ
σ (3-3)

ρ is a constant relating rate of change in the scale dimension to spatial rate of change.  In
most uses of this 1-form, ρ = 1.
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Use of this 1-form suggests that to exhibit zoom-invariance, scale-space derivatives
must be normalized by the scale of the differential operators.  For example, in Fritsch’s
study of the multiscale medial axis (now called core), he applied an operator with its
kernel equal to the Laplacian of Gaussian multiplied by σ2 as a filter for detecting
medialness.  He showed that this operator exhibited zoom invariance [Fritsch 1993].

Eberly’s research on  scale-space derivatives generalizes the normalization process for
derivatives of arbitrary order.  The form of a normalized scale-space spatial derivative
ˆ L x nym  is

ˆ L xnym = ˆ L I, xnym (p | σ) = σ n+ m ∂n

∂xn
∂m

∂ym G(σ, p) ⊗ I(p)( ) (3-4)

The multiscale derivatives with respect to σ are also easily normalized [Eberly 1994ab].

ˆ L σ k = ˆ L I ,σk (p | σ) = σk ∂
k

∂σk G(σ,p) ⊗ I(p) (3-5)

3.1.2. Reconstruction of Sampled Images via the Taylor Expansion

Combinations of derivative values can be used to recreate or approximate smooth
functions from sparse samples.  Digital images are discrete samplings of continuous
functions.  It is necessary to reconstruct a continuous function from the image samples in
order to perform many image analysis operations.  Given a sparse spatial sampling of the
infinite set of derivatives of an image function (providing that the derivatives exist), it is
possible to reconstruct a continuous function using a Taylor series expansion.  For
example, given a discretely sampled, continuously differentiable, 1D image function I(x),
x ∈ Z, a point x0 ∈ Z, and the set of all derivatives 

  
D = ∂n

∂xn I(x) n = 0,1, 2,3,K{ }, the

Taylor series can be used to reconstruct I(x), x ∈ R, from D.  The familiar series is shown
in the following equation.

∀ h ∈ R, and x = x0 + h,

  

I(x) = I(x0 + h)

= I(x0 ) + h ∂
∂x I(x0 )( )+ h2

2!
∂2

∂x2 I(x 0 )( )+ L + hk

k!
∂k

∂xk I(x0 )( )+ L

= hk

k!
∂k

∂xk I(x0 )( )
k=0

∞

∑ (3-6)

The instantaneous derivative values of an image function are seldom known; usually,
only the zeroth order samples are available.  Furthermore, the discrete sampling process
produces an unrecoverable loss of information, governed by Shannon’s sampling theorem
and reflected by the Nyquist frequency.  However, scaled derivatives of a discrete image
can be measured, and a continuous representation of the image at some scale can be
constructed.  If I(x), x ∈ Z is the discrete 1D image function from the example above, let
L

I ,xn (x | σ) be the n-th order scale-space derivative of I(x) at scale σ, (i.e., the 1D analog
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of the derivative values in equation (3-1)), and let the set of corresponding scale-space

derivatives of I(x) be L =
  
L I ,xn (x | σ) n = 0,1,2,3,K{ }.  The multiscale form of equation

(3-6) is

∀ h ∈ R and x = x0 + h, L I (x | σ) = hk

k! L I ,xk (x0 | σ)( )
k =0

∞

∑ (3-7)

Similarly, 2D scale-space images (i.e., LI(p | σ) where p ∈ R2), can be reconstructed
from multiscale derivatives.

  
∀ h ∈R 2, h = (hx hy ), and p = p0 + h, L I (p | σ) =

h x
nh y

m

(n+ m)! L I, xny m (p0 | σ)( )
m= 0

∞

∑
n= 0

∞

∑ (3-8)

Eberly’s scale-space 1-form requires that all spatial differences and scale differences
be made relative to the scale at which the difference is measured.  Therefore, the Taylor
polynomials should be expressed in terms of scale σ, and they should use the normalized

dimensionless derivative values ˆ L 
xpyq .  For a 1D image function, let ˆ h =h/σ (Thus,

ˆ h σ = h ).  Transforming the previous Taylor polynomial in equation (3-7) to the
dimensionless offset value of ˆ h  yields

L I (x | σ) =
ˆ h k

k!
ˆ L I ,xk (x0 | σ)( )

k=0

∞

∑ (3-9)

The 2D offset h = (hx, hy) can be normalized to ˆ h = ( ˆ h x , ˆ h y ) = ( hx

σ ,
hy

σ ) .  The result is a

transformation of equation (3-8) to a corresponding dimensionless Taylor expression.

L I (p | σ) =
ˆ h x

n ˆ h y
m

n!m!
ˆ L I,xn ym (x0 | σ)( )

m= 0

∞

∑
n= 0

∞

∑ (3-10)

3.1.3.  Exploring the Properties of Scale-Space Derivatives

In essence, this chapter is about understanding scale-space derivatives, their uses, and
their properties.  The preceding section has presented scale-space derivatives in both
unnormalized and normalized forms, and supplied some insight into their uses. Scale-
space derivatives provide a vehicle for reconstructing smooth image functions at some
scale.

The next step in the exploration of scale-space derivatives is the understanding their
noise properties.  What are the relations between one derivative and another?  How do
these relationships change as scale increases?

More precisely, derivatives are compared according to the way that they propagate
noise from the original image through changing scale.  How sensitive is a multiscale
derivative to spatially uncorrelated white noise in the original digital image signal?  How
does this sensitivity compare with the response of other derivatives of different order?
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This chapter explores both scale-space differential forms L
xpyq  and ˆ L 

xpyq  and their

interactions with noisy input across scale.

3.2.  Noise and Scale

Consider a 1D image with added white noise; that is, let ˜ I x( ) = I(x) + ˜ u  such that x ∈ R,
and ˜ u  is a zero-mean, spatially uncorrelated normally distributed random variable with
variance v0 (i.e., the probability distribution function of ˜ u = N 0,v0

(˜ u )).   As a linear

function of a random variable ˜ u , ˜ I x( ) can be expressed as function I(x, ˜ u )  whose mean

M(I(x, ˜ u )) = M(˜ I (x))  (or the first moment of ˜ I x( ), µ ˜ I (x)) and variance

V(I(x, ˜ u )) = V(˜ I (x)) (or the second central moment µ ˜ I 

(2)(x) of ˜ I x( ),) are calculated as

shown in Chapter 2, equations (2-12) and (2-13).  The following two equations revisit
those earlier calculations.

M(I(x, ˜ u )) = M(˜ I (x)) = µ ˜ I 
(x) = I(x, ˜ u )

= I(x) + ˜ u ( ) N0, v0
( ˜ u )( )d˜ u ∫

= I(x) N 0, v0
(˜ u )( )d˜ u ∫ + ˜ u 

= I(x)

(3-11)

V(I(x, ˜ u )) = V(˜ I (x)) = µ ˜ I 

(2) (x)

= I(x, ˜ u ) − I(x)( )2

= ˜ u N0, v0
(˜ u )( )d˜ u ∫

= v0

(3-12)

Applying a multiscale evaluation of the image ˜ I x( ) extends the forms of µ ˜ I (x) and

µ ˜ I 

(2)(x) to include a scale parameter.  Consider the convolution of I(x, ˜ u )  with an

arbitrary filter kernel h(x).

µ ˜ I ⊗h

(2 ) (x) = V I(x − τ, ˜ u )h(τ)dτ
−∞

∞

∫( )
= h(τ)( )2 V I(x − τ, ˜ u )( )dτ

−∞

∞

∫
= v0 h(τ)( )2 dτ

−∞

∞

∫ (3-13)

The variance of I x, ˜ u ( ),  convolved with a filter kernel h(x) is dependent on the structure
of the kernel, and not on the underlying function I(x).  This relation is true for all
functions I x, ˜ u ( ) with zero-mean Gaussian additive spatially uncorrelated white noise and
all filter kernels h(x) for any n-dimensional space.
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Combining the zeroth order scale-space derivative L ˜ I 
(x | σ) and equation (3-13)

results in the following relations for 1D images.

V L ˜ I 
(x | σ)( )= µ ˜ I 

(2) (x | σ) = V ˜ I (x − τ)G(σ, x)dτ
−∞

∞

∫( )
= v0 G(σ,x)( )2 dτ

−∞

∞

∫

= v0

1

σ 2π e
−

x2

2σ
2

 

 
 

 

 
 

2

dτ
−∞

∞

∫

= v0
1

2σ π
1

(σ / 2) 2 π e
−

x2

2(σ / 2)2

dτ
−∞

∞

∫
= v0

2σ π

(3-14)

M L ˜ I 
(x | σ)( )= µ ˜ I 

(x | σ) = I(x, ˜ u ) ⊗ G(σ,x)

= I(x − τ) + ˜ u ( )G(σ,x)
−∞

∞

∫ dτ N 0, v0
(˜ u )( )d˜ u ∫

= I(x) ⊗ G(σ,x)( ) N0,v0
(˜ u )( )d˜ u ∫ + ˜ u 

= I(x)⊗ G(σ,x) (3-15)

Thus the variance of the scale-space zeroth order intensity values is inversely proportional
to scale σ and directly proportional to the variance of the noise in the input image.  Keep
in mind that the variance so described is distributed about the mean value of the scale-
space intensity measurement and is thus a measure of the error relative to the scale at
which it is measured and centered about the expected intensity value.

The relation described in (3-14) generalizes to higher dimensions.  If the initial image
is 2D and the Gaussian scale-space sampling kernel is also 2D, the relation in (3-14) can
be rewritten as

V L ˜ I (p | σ)( )= µ ˜ I 

(2 )(p | σ) =
v0

4πσ 2 , p ∈ R2 (3-16)

3.3.  Variance of Multiscale Derivatives without Normalization

In his dissertation research, Blom performed a statistical analysis on scale-space
derivatives of arbitrary order.  He measured the response of the multiscale derivative
measurement to noise as a function of scale [Blom 1992].  Blom summarizes his results
using 2D images as the basis of his analysis.  For the purposes of this discussion, Blom’s
analysis is recreated here for images of one dimension by extending the zero-th order
statistical relations in equations (3-14) and (3-15) to unnormalized 1D scale-space
derivatives.
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3.3.1.  Covariances of 1D Multiscale Derivatives

This is a construction of multiscale covariances for Gaussian scale space of 1D images
with Gaussian additive white noise.  These results are not original observations.  Similar
findings are reported by Metz [Metz 1969] and by Blom [Blom 1992] as well as
elsewhere in the literature.

Given the previously defined 1D image function with additive Gaussian white noise
˜ I (x) , the covariance of two scale-space derivatives of ˜ I (x) can be measured for any
location x at scale σ. The covariance between two such derivatives is defined as

Cov L ˜ I ,x i (x | σ), L˜ I , x j (x | σ)( )
= L ˜ I ,x i (x | σ) − M(L ˜ I ,x i (x | σ))( )L˜ I , x j (x | σ) − M(L ˜ I ,x j (x | σ))( ) (3-17)

where angle brackets indicated the expected value operation and M(L˜ I ,x i (x | σ))  is the

mean or expected value of the i-th scale-space derivative of ˜ I (x) .  Observing that

M(L˜ I ,x i (x | σ)) = ∂ i

∂x i G(σ,x)⊗ I(x) + ˜ u ( )

= ∂ i

∂x i G(σ,x) ⊗ I(x) + ∂ i

∂x i G(σ,x) ⊗ ˜ u 

= ∂ i

∂x i G(σ, x) ⊗ I(x)

= L
I, x i (x | σ) (3-18)

and recalling that convolution distributes over addition yields the following
simplification:

Cov L ˜ I ,x i (x | σ) , L ˜ I ,x j
˜ I (x | σ)( )

= L ˜ I ,x i (x | σ) − L
I,x i (x | σ)( )L ˜ I ,x j

˜ I (x | σ) − L
I ,x j

˜ I (x | σ)( )
= ∂ i

∂x i G(σ,x) ⊗ (I(x) + ˜ u ) − ∂ i

∂x i G(σ, x) ⊗ I(x)( )
∂ j

∂x j G(σ, x) ⊗ (I(x) + ˜ u ) − ∂ j

∂x j G(σ,x) ⊗ I(x)( )
= ∂ i

∂x i G(σ,x) ⊗ ˜ u ( ) ∂ j

∂x j G(σ,x) ⊗ ˜ u )( )
(3-19)

Replacing the convolution operator with its corresponding integral and simplifying yields
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Cov L ˜ I ,x i (x | σ) , L ˜ I ,x j (x | σ)( )
= ∂ i

∂x i G(σ,τ)˜ u (x − τ)dτ
−∞

∞

∫ ∂ j

∂x j G(σ,ν)˜ u (x − ν)dν
−∞

∞

∫
= ∂ i

∂x i G(σ,τ) ∂
j

∂x
j G(σ,ν)˜ u (x − τ)˜ u (x − ν)dν

−∞

∞

∫ dτ
−∞

∞

∫
= ∂ i

∂x i G(σ, τ) ∂
j

∂x
j G(σ,ν) ˜ u (x − τ)˜ u (x − ν) dν

−∞

∞

∫−∞

∞

∫ dτ

(3-20)

The term ˜ u (x − τ)˜ u (x − ν)  is by definition the spatial correlation of the additive noise
function ˜ u  relative to the location x.  Since ˜ u  is assumed to be white, its distribution is
Gaussian about a zero mean, and it is not correlated in space.  That is

˜ u (x − τ)˜ u (x − ν) =
˜ u (x − τ)( )2 = v0

0

,

,

if ν = τ
otherwise

 
 
 

(3-21)

Applying the results from (3-21), the covariance relation reduces to

Cov L ˜ I ,x i (x | σ) , L ˜ I ,x j (x | σ)( )= ∂ i

∂x i G(σ,τ) ∂ j

∂x j G(σ, τ) ˜ u (x − τ)( )2 dτ
−∞

∞

∫
= ∂ i

∂x i G(σ,τ) ∂ j

∂x j G(σ, τ)v0 dτ
−∞

∞

∫
= v 0

∂ i

∂x i G(σ,τ) ∂ j

∂x j G(σ,τ)dτ
−∞

∞

∫

(3-22)

Simplifying the integral in equation (3-22) requires the use of several identities involving
Hermite polynomials.  A complete derivation is provided in the appendix of this chapter.
The resulting simplified relation is

Cov L ˜ I ,x i (x | σ) , L ˜ I ,x j (x | σ)( )

=

(−1)
i+

i + j

2( ) v0

2σ π
1

σ 2

 
 

 
 

i + j

(2r −1)
r= 0

(i+ j) / 2

∏
 
 
  

 
,∀ even i + j

0 , ∀ odd i + j

 

 
  

 
 
 

(3-23)

Variance is a special case of covariance. Using equation (3-23), the general form for
the variance of any k-th order (k > 0) unnormalized scale-space derivative of a 1D image
is shown to be

V L ˜ I ,k (x | σ)( )= v0

2σ π

(2i −1)
i =1

k

∏

2k σ2 k (3-24)
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Values for the variances of scale-space derivatives (order 0 - 6) are shown in  Table 3.1.

Derivative Variance

L ˜ I 
(x | σ) v0

2σ π

L ˜ I ,x
(x | σ) 1

2σ2

v0

2σ π

L ˜ I ,x2 (x | σ) 3
4σ 4

v0

2σ π

L ˜ I ,x3 (x | σ) 15
8σ6

v0
2σ π

L ˜ I ,x4 (x | σ) 105
16σ8

v0

2σ π

L ˜ I ,x5 (x | σ) 945
32 σ10

v0

2σ π

L ˜ I ,x6 (x | σ) 10395
64 σ12

v0

2σ π

Table 3.1.  Variances of unnormalized scale-space derivatives (order 0-6) of noisy 1D images
(variance of input noise = v0)

3.3.2.  Covariances of 2D Multiscale Derivatives

Blom and ter Haar Romeny [Blom 1992][ter Haar Romeny 1993] present similar results
for unnormalized scale-space derivatives of noisy 2D images (Gaussian distributed, zero
mean additive noise).  Their results are summarized in Table 3.2.

Derivative Variance

L ˜ I (p | σ) v0

4σ2π

L ˜ I ,x
(p | σ) ,L ˜ I ,y (p | σ) 1

4σ 2

v0

4σ2π

L ˜ I ,x2 (p | σ) ,L ˜ I ,y2 (p | σ) 3
16σ4

v0

4σ2 π

L ˜ I ,xy (p | σ) 1
16σ4

v0

4σ2 π

L ˜ I ,x3 (p | σ) ,L ˜ I ,y3 (p | σ) 15
64 σ6

v0

4σ2π

L ˜ I ,x2y (p | σ) ,L ˜ I ,xy 2 (p | σ) 3
64 σ6

v0

4σ2π

L ˜ I ,x4 (p | σ) ,L ˜ I ,y4 (p | σ) 105
256σ 8

v0

4σ 2π

L ˜ I ,x3y (p | σ) ,L ˜ I ,xy3 (p | σ) 15
256σ 8

v0

4σ 2π

L ˜ I ,x2y2 (p | σ) 9
256σ 8

v0

4σ 2π

Table 3.2.  Variances of unnormalized scale-space derivatives  of noisy 2D images  (variance
of input noise = v0) for partial spatial derivatives to the fourth order  (Adapted from Blom
1992)
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The general form for the variance of unnormalized scale-space derivatives of a two-
dimensional image, where j represents the order of differentiation in the x direction and k
is the order of differentiation in the y direction (j > 0; k > 0) is given by

V L ˜ I ,x jy k (p | σ)( )=
v0

4σ2π

(2n −1)
n=1

i

∏ (2m − 1)
m=1

j

∏

2 j +k( )σ2 j +k( )

(3-25)

3.4.  Variance of Normalized Scale-Space Derivatives

The values shown in Tables 3.1 and 3.2 are a reflection of the absolute propagated error
present in the resulting scale-space derivative images at a single scale σ.  However, if a
measurement is to be made across different scales (i.e., comparing derivative results at
two different sampling/filter apertures) the derivative values must be normalized to
ensure measurements that are invariant with respect to changing scale.  Subsequently, the
statistics of these measurements, when made of noisy images, must also reflect the
normalization.  This section describes new observations of normalized scale-space
differential invariants.

Using the relations found in (3-3) and (3-24), it is straightforward to determine the
variance of normalized 1D scale-space derivatives V( ˆ L ̃ I ,k (x | σ)).

V( ˆ L ̃ I , k (x | σ)) = V(σk L ˜ I ,k (x | σ)) = σ2kV(L ˜ I , k (x | σ)) (3-26)

Substituting from (3-24) into equation (3-26) yields the following general form for the
variance of normalized derivatives of 1D images:

V ˆ L ̃  I ,k
(x | σ)( )=

v0

2σ π

(2i −1)
i =1

k

∏

2k
(3-27)

Using this relation, the results of Table 3.1 are recalculated for normalized spatial
derivatives and shown in Table 3.3.

Similarly, the general form for the variance of normalized scale-space derivatives of a
two-dimensional image is given by

V ˆ L ̃  I ,x jy k (p | σ)( )=
v0

4σ2π

(2n −1)
n=1

i

∏ (2m − 1)
m=1

j

∏

2 j +k( )

(3-28)

where p =(x  y), j represents the order of differentiation in the x direction, and k is the
order of differentiation in the y direction (j > 0; k > 0).  The resulting variance statistics
are generated for normalized scale-space derivatives of 2D images up to the fourth order
are presented in Table 3.4.
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Derivative Variance

ˆ L ̃  I (x | σ)
v0

2σ π

ˆ L ̃  I ,x(x | σ) 1
2

v0

2 σ π

ˆ L ̃  I ,x2 (x | σ) 3
4

v0

2σ π

ˆ L ̃  I ,x3 (x | σ) 15
8

v0
2σ π

ˆ L ̃  I ,x4 (x | σ) 105
16

v0
2σ π

ˆ L ̃  I ,x5 (x | σ) 945
32

v0
2σ π

ˆ L ̃  I ,x6 (x | σ) 10395
64

v0

2σ π

Table 3.3. Variances of normalized scale-space derivatives (order 0-6) of noisy 1D images
(variance of input noise = v0)

Derivative Variance

ˆ L ̃  I (p | σ)
v0

4σ2π

ˆ L ̃  I ,x(p | σ) , ˆ L ̃  I ,y(p | σ) 1
4

v0

4σ2π

ˆ L ̃  I ,x2 (p | σ) , ˆ L ̃  I ,y2 (p | σ) 3
16

v0

4σ2π

ˆ L ̃  I ,xy(p | σ) 1
16

v0

4σ2π

ˆ L ̃  I ,x3 (p | σ) , ˆ L ̃  I ,y3 (p | σ) 15
64

v0

4σ 2π

ˆ L ̃  I ,x2y (p | σ) , ˆ L ̃  I ,xy 2 (p | σ) 3
64

v0

4σ 2π

ˆ L ̃  I ,x4 (p | σ) , ˆ L ̃  I ,y4 (p | σ) 105
256

v0

4σ 2π

ˆ L ̃  I ,x3y (p | σ) , ˆ L ̃  I ,xy 3 (p | σ) 15
256

v0

4σ2π

ˆ L ̃  I ,x2y 2 (p | σ) 9
256

v0

4σ2π

Table 3.4.  Variances of normalized scale-space derivatives of noisy 2D images for partial
spatial derivatives to the fourth order (variance of input noise = v0)

3.5.  Analysis of 1D Scale-Space Derivatives

While the structure of equations (3-24) and (3-27) are very similar (indeed, the
coefficients are identical), the variance of normalized scale-space derivatives are
inversely proportional to σ, while the unnormalized derivatives are inversely proportional
to σ2k+1 (k is the order of differentiation).  This difference can be shown graphically by
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plotting the propagated error of each of the derivative measurements vs. the scale
parameter σ for different orders of differentiation.

Figure 3.1 shows the propagated error of scale-space derivatives without
normalization.  Figure 3.2 shows the propagated error with the normalizing factor
included.  In both cases, the plots are on a Log-Log scale.  The order of differentiation k
shown by the different curves ranges from k = 0 to k = 6 and is labeled on the far left of
each figure.

Comparing the two plots, the most important difference is immediately clear.  In both
plots, the propagated error in either normalized or unnormalized scale-space derivatives is
consistently decreasing with increasing scale σ.  However, in the unnormalized
measurements there is a significant crossing where for relatively large scale (σ > 1), the
variance (and subsequently the significance) of the propagated error is smaller for higher
order derivatives.

0
1
2
3
4
5
6

Ln V(L ˜ I , x
k (x|σ ))

 

 
  

 

 
  order

Ln(σ)

Figure 3.1.  Propagated error of
unnormalized 1D scale-space
derivatives (order 0-6). Each curve
represents the ratio of variance of
output to input noise of the linear
unnormalized derivative of Gaussian
filter vs. scale σ.  Plot is on a log-log
scale.

0

1
2

3
4
5
6

order

Ln(σ)

Ln V( ˆ L ̃  I ,x
k (x|σ ))

 

 
  

 

 
  

Figure 3.2  Plot of the propagated
error of normalized 1D scale-space
derivatives (order 0-6). Each curve
represents the ratio of variance of
output to input noise of the linear
normalized derivative of Gaussian
filter vs. scale σ.  Plot is on a log-log
scale.

The crossover exhibited in the unnormalized derivatives has been used to justify the
application of very high order derivative filters in the analysis and reconstruction of
images.  When comparing across scale, a normalized representation is required.  If the
derivatives are normalized, the improved stability of derivative measurements as scale
increases remains, but the assertion that the relative stability and accuracy improves with
increasing order of differentiation at large scale does not hold.

An alternate finding for normalized scale-space derivatives becomes apparent.  For
1D normalized scale-space derivatives, the low order differential forms (k=1 and k=2)
propagate less noise than either the luminance (zeroth order form or k=0) or any of the
derivatives for k > 2.  Figure 3.3 shows the noise propagation of normalized scale-space
derivatives versus order of differentiation relative to the zeroth order or scale-space
luminance noise.  The ‘J’ shape of the curve bears consideration  (see Section 3.7,
“Discussion”).



Normalized Scale-Space Derivatives: A Statistical Analysis                                         39

order k

Ln
V( ˆ L ̃  I ,xk ( x|σ ))

V ( ˆ L ̃  I ,x
0 ( x|σ ))

 

 

 
  

 

 

 
  

Figure 3.3.  Plot of the propagated error of normalized 1D scale-space derivatives (order 0-6).
Curve represents the ratio of variance of output to input noise of the linear unnormalized
derivative of Gaussian filter vs. order of differentiation.  Plot is on a log scale.

3.6.  Analysis of 2D Scale-Space Derivatives

To create a comparable analysis for 2D images, the appropriate variances must combine
the contributions of all the partial derivatives of the same order.  Consider the 2D Taylor
expansion for a scale-space function L ˜ I 

(p | σ) .  Let p0 ∈ R2, h ∈ R2 such that the interval

h = (hx, hy), and p ∈ R2 where p = p0 + h.  Rewriting equation (3-8) as an expression of
the order of differentiation k generates the following representation.

  

L ˜ I 
(p | σ) = L ˜ I 

(p0 | σ) + hxLI, x(p0 | σ) + hy LI, y(p0 | σ) +L

+ 1
k! hx

ihy
k −i L

I ,x iy k− i (p0 | σ)( )
i =0

k

∑ +L (3-29)

Inspection the k-th order term shows that each partial derivative contributes to the k-th
value weighted by the interpolation interval.  The 2D variance analog to the 1D treatment
shown before requires the measurement of the variance of the k-th order term.  These
calculations require the combination of covariances of partial derivatives of the same
order.  Blom derived an expression for the covariance of two partial derivatives of 2D
images [Blom 1992].  Formally the expression of the variance of the k-th order term of
the 2D scale-space Taylor expansion is shown below in equation (3-30).

V(T(k)) = V hx
nh y

k-n L ˜ I ,xn yk− n (p0 | σ)
n =0

k

∑
 
 
  

 

= hx
k +i - jhy

k+ j- iCov L˜ I ,x iyk −i (p0 | σ), L˜ I ,xk − jy j (p0 | σ)( )
j =0

k

∑
i= 0

k

∑

=
v0

4σ2π
1

2 k σ2k hx
k+ i- jh y

k+ j- i (2n −1)
n =1

(k +i − j) / 2

∏ (2m −1)
m=1

(k −i + j) / 2

∏
j= 0

k

∑
i =0

k

∑

∀ even k + i - j and even k - i + j (3-30)
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To set the offset vector h to a common value, consider all values equidistant from the
point p0.  That is, consider for some radius r the set of all points {h = (hx, hy) |
r2=hx

2+hy
2}.  Therefore, let hx = r cos(θ) and hy = r sin(θ).  Substitute these values into

equation (3-30).

V r cosθ( )n rsinθ( )k-n L ˜ I ,xny k− n (p0 | σ)
n =0

k

∑
 
 
  

 

= v 0

4σ2π
r2k

2 k σ2k
cos(θ)k +i - j sin(θ)k+ j- i (2n −1)

n=1

(k +i − j) / 2

∏ (2m −1)
m =1

(k −i + j) / 2

∏
j= 0

k

∑
i = 0

k

∑
∀ even k + i - j and even k - i + j (3-31)

Evaluating the variance expression in terms of θ shows that such a representation of
variance is cyclic for all values of r and all values of σ.  The maximum value of the
variance expression is found when θ = 0, θ = 1

2 π , θ = π, θ = 3
2 π , or θ = 2π.  This implies

that without a loss of generality, the error propagated from uncorrelated noise through
unnormalized 2D scaled derivatives can be bounded by

Maxθ V rcosθ( )n
r sinθ( )k-n

L ˜ I , xny k− n (p0 | σ)
n =0

k

∑
 
 
  

 
 

 
  

 
 =

v0

4σ2π
r2k

2k σ2k (2n −1)
n=1

k

∏ (3-32)

Given hx = r cos(θ) and hy = r sin(θ), consider the variance of the combined k-th order
terms of the 2D Taylor expansion relative to the magnitude of h.  That is, consider

Vmax T(k)( ) = 1

r2 k

 
 

 
 Maxθ V r cosθ( )n r sinθ( )k-n L ˜ I ,xn yk− n (p | σ)

n= 0

k

∑ 
 
  

 
 

 
  

 
 

=
v0

4σ2π
1

2k σ2k (2n − 1)
n=1

k

∏
(3-33)

where T(k) represents the contribution of the aggregate k-th order derivative terms of the
Taylor expansion, divided by the weighting of the magnitude of the interpolation offset h.
The value in equation (3-33) represents the 2D analog of the variance of 1D scaled
derivatives shown in equation (3-24).

If the 2D offset vector h is normalized to ˆ h = ( ˆ h x , ˆ h y ) = (
hx

σ ,
hy

σ ) , then it follows that

given ˆ r = r
σ , ˆ h x = ˆ r cos(θ) and ˆ h y = ˆ r sin(θ) .  Repeating the analysis shown above for

the dimensionless Taylor expansion shown in equation (3-10) and using the scaled
quantities for ˆ h  and ˆ r  generates an expression for the upper bound on propagated error
from uncorrelated noise through normalized scaled derivatives:

Maxθ V rcosθ( )n r sinθ( )k-n ˆ L ̃ I , xny k− n (p | σ)
n =0

k

∑
 
 
  

 
 

 
  

 
 =

v0

4σ2π
ˆ r 2k

2k
(2n −1)

n =1

k

∏ (3-34)
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If ˆ T (k) is the aggregate contribution of the k-th order normalized derivatives to the
dimensionless Taylor expansion to be weighted by the normalized magnitude ˆ r = r

σ  ,
then the normalized 2D variances of the k-th order, unweighted by ˆ r  is

Vmax
ˆ T (k)( )= 1

ˆ r 2k

 
 

 
 Max V ˆ r cosθ( )n ˆ r sin θ( )k -n ˆ L ̃ I , x ny k − n (p | σ)

n = 0

k

∑
 
 
  

 
 

 
  

 
 

=
v0

4σ2 π
1

2k (2n −1)
n =1

k

∏
(3-35)

The results for both the normalized and unnormalized expressions are summarized in
Table 3.5.

Order
(k)

Vmax T(k)( ) Vmax
ˆ T (k)( )

0
v0

4 πσ2

v0

4 πσ2

1
v0

8πσ 4

v0

8πσ 2

2 3v0

16πσ 6

3v0

16πσ 2

3 15 v0

32 πσ 8

15 v0

32 πσ 2

4 105v0

64 πσ10

105v0

64 πσ 2

5 945v 0

128πσ12

945v0

128πσ 2

6 10395v0

256πσ 14

10395v0

256πσ 2

Table 3.5.  Variances of both unnormalized and normalized scale-space derivatives  (order 0-
6) of noisy 2D images   (variance of input noise = v0)

The equations of Table 3.5 are easily plotted and their results portrayed graphically in
Figures 3.4 and 3.5.  These plots resemble their 1D counterparts, and the conclusions
drawn from them are the same as in the 1D case.  Recapitulating the 1D results, in all
cases the variances are monotonically decreasing with scale; however, if normalized
values are considered in order to make cross-scale comparisons, the crossing of the
variance values of the derivative values through increasing scale does not persist.

As in the 1D case,  under normalization the values of the variances of 2D derivatives
are not strictly increasing with rising order of differentiation k.  The first and second order
normalized 2D derivatives propagate less noise than the scaled zeroth order intensities,
regardless of scale.  Figure 3.6 shows variances of 2D derivative terms ˆ T (k) plotted as a
function of the order of differentiation and relative to the variance of the zeroth order
scaled intensity value ˆ T (0) .
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0
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3
4
5
6

Ln Vmax (T(k ))( )order

Ln(σ)

Figure 3.4.  Propagated error of
unnormalized 2D scale-space
derivatives (order 0-6).  Each curve
represents the ratio of variance of
output to input noise of the linear
unnormalized derivative of Gaussian
filter vs. scale σ.  Plot is on a log-log
scale.

0
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3
4
5
6

Ln Vmax ( ˆ T (k ))( )order

Ln(σ)

Figure 3.5  Plot of the propagated
error of normalized 2D scale-space
derivatives (order 0-6).  Each curve
represents the ratio of variance of
output to input noise of the linear
normalized derivative of Gaussian
filter vs. scale σ.  Plot is on a log-log
scale.

3.7.  Discussion

Human vision is used as a benchmark for evaluating image analysis systems.  It has long
been known that humans are better able to distinguish different levels of contrast than
absolute levels of intensity.  Human vision is capable of distinguishing objects relative to
their surroundings regardless of variations in lighting.

Scale space is often presented as a reasonable model for the overlapping receptive
fields of the visual system.  The results shown in this research demonstrate possible
agreement between scale-space visual responses and the sensitivity of the human visual
system to contrast rather than absolute intensity.  I have analyzed the propagation of noise
through scale-space intensity as well as scale-space derivative measurements.  The results
show that scale-space representations of first order, second order, and for 2D images,
normalized scaled derivatives of up to the fifth order propagate less noise than the scale-
space measures of absolute intensity.

order k

Ln
Vmax ( ˆ T ( k))

Vmax ( ˆ T ( 0))

 

 
  

 

 
  

Figure 3.6.  Plot of the propagated error of normalized 2D scale-space derivatives (order 0-6).
Curve represents the ratio of variance of output to input noise of the linear unnormalized
derivative of Gaussian filter vs. order of differentiation.  Plot is on a log scale.
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The implication is that a visual system based on scale-space gradients and scale-space
curvature using the normalization suggested by Eberly should be more robust than a
system based on absolute intensity.  This implied agreement between scale-space analysis
and the human visual system supplies circumstantial support for scale space as a visual
model.

This finding is dependent on the form of normalization used to achieve dimensionless
scale-space measurements.  Eberly suggests multiplying the scale-space derivative
measurement by σk, where σ is the aperture of the scale operation, and k is the order of
differentiation.  If σ

b( )k  is substituted for the normalizing term (where b is some
constant), dimensionless scale-space measurements are still achieved.  However, this
change in normalization changes the shape of the plots shown in figure 3.3. and figure
3.6.  The global minimum represented in each of these plots can be altered to lie between
any two values of k.  This sensitivity to the propagation of noise in multiscale analysis to
the selection of a normalization term requires further study.

3.8.  Conclusion

I have derived analytic forms for the propagation of noise in an input signal through scale
to calculated values for normalized scale-space derivatives.  These expressions are based
on the scale of the derivative-measuring kernel, the variance of the noise of the input
signal, and the order of differentiation.

A comparison of the propagated error in both unnormalized and normalized
derivatives is presented.  The improved stability of derivative measurements as scale
increases is clear.  The assertion that the relative stability and accuracy of higher order
derivatives of image intensity at large scale is shown to be incorrect when spatial
measurements are made relative to the scale aperture.

An alternate finding is that for normalized scale-space derivatives, low order
derivatives propagate less noise than either the zeroth order intensity measurement or
derivatives of the third or higher orders.  The first (gradient) and second (intensity
curvature) spatial derivatives propagate less noise than the scale-space intensity value or
derivatives of order four or higher.  This finding is sensitive to the form of the
normalization used to achieve dimensionless scale-space measurements.  The
normalization used in this study was suggested by Eberly.  Dimensionless scale-space
derivative measurements can be computed emphasizing the propagation of input noise to
a lesser or greater degree.  This sensitivity is of noise propagation to the normalization
factor is still being explored.
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Appendix : Covariance of Scale-Space Derivatives

The following derivation is a reconstruction of second central moments of multiscale 1D
images with Gaussian additive white (spatially uncorrelated) noise.  This work is adapted
from Blom [Blom 1992].  For a full derivation of the general multidimensional case, see
the appendix of Chapter 4 of Blom’s dissertation.

To calculate the covariance of 1D scale-space derivatives, consider the relation in
equation (3-22).

Cov L ˜ I ,x i (x | σ) , L ˜ I ,x j (x | σ)( )= v0
∂i

∂x i G(σ,τ) ∂ j

∂x j G(σ, τ)dτ
−∞

∞

∫ (3A-1)

Integrating (3A-1) by parts yields

Cov L ˜ I ,x
i (x | σ) , L ˜ I ,x

j (x | σ)( )= v0
∂ i

∂x i G(σ,x)( ) ∂ j −1

∂x j−1 G(σ,x)( )
−∞

∞ 
 

 
 

− v0
∂ i+1

∂x
i+1 G(σ,τ) ∂ j−1

∂x
j −1 G(σ, τ)dτ

−∞

∞

∫
(3A-2)

Note that the first term of (3A-2) vanishes for large x.  That is,

v 0
∂ i

∂x i G(σ, x)( ) ∂ j−1

∂x j−1 G(σ, x)( )
−∞

∞ 
 

 
 = 0 (3A-3)

Repeating the integration by parts j times generates the following relationship

Cov L ˜ I ,xi (x | σ) , L ˜ I ,x j (x | σ)( )= (−1) j v0
∂i + j

∂x i+j G(σ,x)( )G(σ,x)dx
−∞

∞

∫ (3A-4)

If w =
x

σ 2
 anddw =

dx

σ 2
, then since G(σ, x) = 1

σ 2π
e

−
x2

2σ
2

, (3A-4) becomes

Cov L ˜ I ,x i (x | σ) , L ˜ I ,x j (x | σ)( )= (−1) j v0

1

2πσ 2

1

σ 2

 
 

 
 

i+ j

∂ i + j

∂w i + j e − w2( )e −w 2

dw
−∞

∞

∫ (3A-5)

Invoking Rodrigues’ formula for Hermite polynomials:

∂k

∂z k e−z 2

= (−1)k Hk (z) e−z 2

(3A-6)

transforms equation (3A-5) into

Cov L ˜ I ,x i (x | σ) , L ˜ I ,x j (x | σ)( )= (−1)i v0

1

2πσ 2

1

σ 2

 
 

 
 

i + j

Hi + j(w) e−2 w2

dw
−∞

∞

∫ (3A-7)
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Consider only the integral element of (3A-7).  Applying the recurrence relation of
Hermite polynomials:

H k (z) = 2z Hk −1(z) − 2(k −1) H k− 2(z)   ,           k � 2 (3A-8)

transforms the integral element of (3A-7) to the following recurrence relation.

Hi + j(w) e−2w 2

dw
−∞

∞

∫ = 2wH i+ j−1 (w) − 2(i + j −1)H i + j−2 (w)( )e−2w2

dw
−∞

∞

∫ (3A-9)

simplifying to

Hi + j(w) e−2w 2

dw
−∞

∞

∫
= 2wH i+ j −1 (w)e −2w2

dw
−∞

∞

∫
− 2(i + j −1)H i+ j− 2 (w) e −2 w2

dw
−∞

∞

∫
(3A-10)

Integrating the first term of (3A-10) by parts yields

Hi + j(w) e−2w 2

dw
−∞

∞

∫
= − 1

2
H i+ j−1 (w)e −2w 2

−∞

∞ 
 

 
 

+ 1

2
∂

∂w Hi + j−1(w)e−2w 2

dw
−∞

∞

∫
− 2(i + j −1)H i+ j− 2 (w) e −2 w2

dw
−∞

∞

∫

(3A-11)

Apply (3A-6), Rodrigues’ formula for Hermite polynomials, to the first term of (3A-11).

−
1

2
Hi + j−1 (w)e−2w

2

−∞

∞

= Hi + j−1(w)e− w2

e− w2

−∞

∞

= (−1) i + j−1 e− w2
∂ i+j −1

∂wi + j −1 e −w 2

−∞

∞

= 0

(3A-12)

demonstrates that the first term vanishes for large values of w.  Furthermore, combining
(3A-6) and the recurrence relation shown in (3A-8) generates the following identity for
Hermite polynomials:
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∂
∂z H k (z) = ∂

∂z (−1)k ez 2
∂k

∂z k e−z 2( )
= 2z (−1)k ez 2

∂k

∂z k e−z 2( )− (−1)k +1 ez 2
∂ k+1

∂z k+1 e− z 2( )
= 2z Hk (z) − H k+1(z)

= 2z Hk (z) − 2z Hk (z) + 2k H k−1(z)( )
= 2k Hk −1(z)

(3A-13)

Using the result of (3A-12) and applying equation (3A-13), equation (3A-11) becomes

Hi + j(w) e−2w 2

dw
−∞

∞

∫
= (i + j −1)H i+ j− 2 (w) e −2 w2

dw
−∞

∞

∫
− 2(i + j −1)H i+ j− 2 (w) e −2 w2

dw
−∞

∞

∫
= −(i + j −1) H i+ j− 2 (w) e −2w2

dw
−∞

∞

∫

(3A-14)

Summarizing the results shown between (3A-7) and (3A-14) reveals an important
recurrence relation regarding covariances among 1D scale-space derivatives.

Hi + j(w) e−2w 2

dw
−∞

∞

∫ = − (i + j −1) H i+ j− 2 (w) e −2w2

dw
−∞

∞

∫ 
 

 
 (3A-15)

Applying the recurrence relation in (3A-15) to (3A-7) yields

Cov L ˜ I ,x i (x | σ) , L ˜ I ,x j (x | σ)( )
= (−1) i v 0

1

2πσ 2

1

σ 2

 
 

 
 

i+ j

H i+ j (w) e−2y2

dw
−∞

∞

∫
= (−1) i+1 v0

1

2πσ 2

1

σ 2

 
 

 
 

i+ j

(i + j − 1) H i + j−2 (w) e−2y2

dw
−∞

∞

∫ 
 

 
 

(3A-16)

Manipulating Rodrigues’ formula of (3A-6), it is clear that H0(z) = 1 and H1(z) = 2z.  If
i+j is odd, then (i+j-1)/2 is an integer value.  Repeated application of (3A-15) to (3A-7)
through (i+j-1)/2 iterations yields
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Cov L
˜ I ,x i (x | σ) , L

˜ I ,x j (x | σ)( )
= (−1)

i+
i + j −1

2( ) v0

2πσ 2

1

σ 2

 
 

 
 

i + j

(2r)
r= 0

(i + j−1) / 2

∏
 
 
  

 
H 1(w) e−2w 2

dw
−∞

∞

∫ 
 

 
 

= (−1)
i+

i + j −1

2( ) v0

2πσ 2

1

σ 2
 
 

 
 

i + j

(2r)
r= 0

(i + j−1) / 2

∏
 
 
  

 
2w e−2w 2

dw
−∞

∞

∫ 
 

 
 

= (−1)
i+

i + j −1

2( ) v0

2πσ 2

1

σ 2

 
 

 
 

i + j

(2r)
r= 0

(i + j−1) / 2

∏
 
 
  

 
−

1

2
e −2w 2

−∞

∞ 

 
  

 
 

= 0

,∀ odd i + j (3A-17)

Thus, for all odd i+j the corresponding covariance of the 1D scale-space derivatives is 0.
This implies that odd derivatives are uncorrelated with even derivatives.  If i+j is even,
then (i+j)/2 is an integer value.  Repeated application of (3A-7) to (3A-15) through (i+j)/2
iterations yields

Cov L
˜ I ,x i (x | σ) , L

˜ I ,x j (x | σ)( )
= (−1)

i+ i + j
2( ) v 0

2πσ 2

1

σ 2

 
 

 
 

i+ j

(2r −1)
r=0

(i+ j) / 2

∏
 
 
  

 
H 0 (w) e −2w2

dw
−∞

∞

∫ 
 

 
 

= (−1)
i+ i + j

2( ) v 0

2πσ 2

1

σ 2

 
 

 
 

i+ j

(2r −1)
r=0

(i+ j) / 2

∏
 
 
  

 
e −2w2

dw
−∞

∞

∫ 
 

 
 

= (−1)
i+ i + j

2( ) v0

2σ π
1

σ 2

 
 

 
 

i + j

(2r −1)
r= 0

(i+ j) / 2

∏
 
 
  

 
1

σ π
e

−
x2

σ 2 dx
−∞

∞

∫
 

 
 

 

 
 

= (−1)
i+ i + j

2( ) v0

2σ π
1

σ 2

 
 

 
 

i + j

(2r −1)
r= 0

(i+ j) / 2

∏
 
 
  

 

,∀ even i + j (3A-18)

Finally, since variances are a special case (i = j) of the covariance calculation, generating
an expression for the variance of a 1D scale-space derivative is straightforward.

V L ˜ I ,k
(x | σ)( )= Cov L ˜ I ,k

(x | σ) , L ˜ I ,k
(x | σ)( )

=
v 0

2σ π
1

σ 2k 2k

 
 

 
 (2r −1)

r=1

k

∏
 
 
  

 

(3A-19)


